
AgACCP – A Protocol Agnostic API for Content
Consumers and Producers

Martine S. Lenders, advised by Matthias Wählisch
Freie Universität Berlin

{m.lenders, m.waehlisch}@fu-berlin.de

Abstract—Most protocols in the Internet of Things
(IoT) such as CoAP and MQTT follow the end-to-
end paradigm of the Internet. NDN on the other
hand implements a fundamental change by bringing
application layer notion to the networking layer. In
consequence application developers are now challenged
(not only in the IoT) with the fact that – in addition
to the traditional choices like reliability or security
– they have to choose whether they need to find a
host first to get data or not. The protocol agnostic
API for content consumers and producers (AgACCP)
offers some help with this decision, as it abstracts away
any networking related contexts and purely focuses on
content production and consumption.

I. Introduction

The Internet is based on an end-to-end paradigm due
to the nature of content exchange in its early days. Today
however the Internet is used primarily to disseminate
content mostly identified by a name. Especially, the host
of a producer lost its importance and often even poses a
problem, as the locality to a certain host can lead to a
conflict in resource scalability.

Coming from an Internet of Things background,
there are three protocols to consider for fetching
content: CoAP [1] as a GET/Response-based pro-
tocol designed by the IETF to allow implementa-
tion of HTTP-like RESTful APIs, with the distinc-
tion of being usable over non-reliable transport lay-
ers like UDP. As such it uses HTTP-like URIs such
as coaps://inf.fu-berlin.de/lecture-hall/temp to
identify content objects. However, at least to date it
is not widely deployed. MQTT [2] on the other hand
is deployed by many cloud providers servicing the IoT
domain. It uses a topic-based publish / subscribe paradigm
to deliver content: A client connects to a central bro-
ker g. inf.fu-berlin.de) and depending on their role
they either subscribe to topics (e.g. /lecture-hall/#
using wildcards) to fetch the content (subscribers) or
publish data under a certain topic (publishers; e.g.
/lecture-hall/temp/).

Finally, NDN is an implementation of Information-
Centric Networking [3]. It implements the publish / sub-
scribe paradigm on the network layer. It uses hierarchical
naming for the content to make routing decisions and is
also able to provide on-route caching, since the content and

Link Layer
IPv4 / IPv6
TCP / UDP NDN

CoAP MQTT
Application

Fig. 1. Network stack utilizing CoAP, MQTT, and NDN.

the name of the content are strongly bound. A name exam-
ple would be /de/fu-berlin/inf/lecture-hall/temp.

Using all three protocols at once would result in a
network stack seen in Figure 1.

While all three protocols provide a defined API for
developers to interact with, a common API for all three
would be desirable to minimize porting efforts and to pro-
vide gateways between the three domains of the protocols.

The API proposed here – AgACCP ([@"ga:sp]) – is
providing such a common development interface.

II. Challenges

A number of challenges arise when implementing such
a common API.

First, there is a semantic difference with regards to nam-
ing to an MQTT topic which is comparable to requesting
all content objects published under this topic. In contrast
to this CoAP and NDN identify a single content object
by name. A well defined name translation between those
semantics would thus be required.

Second, the question of duplicate names arise. There
might be a content object published, e.g., in both the

≪interface≫
AgaccpBase

+ set preference(: String, : Object) : void
+ set event handler(: Callable) : void

≪interface≫
AgaccpProducer

+ produce(name : String, data : Byte[], ctx : Dict) : void

≪interface≫
AgaccpConsumer

+ subscribe(name : String, ctx : Dict) : void

≪interface≫
AgaccpRelay

+ forward(name in : String, name out : String, ctx : Dict) : void

Fig. 2. Class model for AgACCP

m.lenders@fu-berlin.de
m.waelisch@fu-berlin.de


MQTT broker and an NDN / CoAP network. One al-
ternative would be to enforce a syntactic different be-
tween names and thus prevent the occurrence of duplicate
names. Due to the agnostic nature of AgACCP this is
not desirable. The second approach would need to address
the problem of redundant content. Two solutions might
a heuristic (for the embedded context less desirable) or a
preference via user configuration.

Third, from a systems perspective, a constrained IoT
node is equipped with a modular architecture in which
different network stacks share common data structures
where possible to allow for a minimal, use-case dependent
code size.

III. AgACCP
AgACCP provides an agnostic API for content

consumption and production, be it ICN-based communi-
cation, traditional HTTP over TCP/IP, or IoT protocols
such as MQTT(-SN) or CoAP. It is designed with versa-
tility and use on constrained devices in mind.

When developing an API for constrained devices, ex-
perience shows that it should be as minimal as possible
and also allow for only implementing sub-sets of the API’s
operations depending on the use case. As such, the roles
of producers and subscribers should clearly be distinct
from each other. To bridge domains that deploy different
technologies, a relay function is needed.

Based on those observations, AgACCP was developed.
A class model can be seen in Figure 2.

A base interface AgaccpBase provides a way to both
configure the end-points preferences and to set an event
handler. The event handler is a callback that can be used
by the underlying implementation to notify about events
such as finished content production or the retrieval of a
content a consumer subscribed to.

Producers and consumers extend the AgaccpBase
interface as AgaccpProducer and AgaccpConsumer
respectively. Both provide a single method:
AgaccpProducer::produce() can be used to
produce content data under a certain name and
AgaccpConsumer::subscribe() in turn allows for
subscription to a certain name which consumption is
notified using the event handler. In both cases, the ctx
dictionary allows the user to set some protocol specific
contexts, if required by the user (e.g. protocol preference
for duplicate names).

To allow bridging two domains (e.g. to imple-
ment an ICN-to-MQTT-gateway) a third interface
AgaccpRelay that also extends AgaccpBase is specified.
Its AgaccpRelay::forward() method allows the user to
define a rule how to transform one name (name_in) into
another (name_out).

A. Related work
An agnostic API for the transport layer called Transport

Services is currently worked on by the TAPS working

group of the IETF [4]. AgACCP is orthogonal to this,
since it is targeted to be an API to application layer pro-
tocols, while Transport Services is target for the transport
layer. Furthermore, AgACCP was designed with protocols
that are not working end-to-end while such protocols can
only be implemented rather awkwardly using Transport
Services. However, Transport Services (TAPS) could be
used to implement AgACCP over the transport protocols
supported by TAPS such as HTTP.

A similar approach more focused on providing an API
to NDN was presented in [5].

IV. Next Steps
A first step would be an implementation that is sup-

ported by a few platforms and supports a good subset of
underlying protocols. Both ends of the spectrum would
be desired for a good comparability. This means both a
high-end implementation in a high-level language such as
Python and an implementation for constraint devices in a
low-level language such as C.

References
[1] Z. Shelby, K. Hartke, and C. Bormann, “The Con-

strained Application Protocol (CoAP),” IETF, RFC
7252, June 2014.

[2] A. Banks and R. G. (Eds.), “MQTT Version 3.1.1,”
OASIS, OASIS Standard, October 2014. [Online].
Available: http://docs.oasis-open.org/mqtt/mqtt/v3.
1.1/os/mqtt-v3.1.1-os.html

[3] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou,
C. Tsilopoulos, X. Vasilakos, K. V. Katsaros, and G. C.
Polyzos, “A Survey of Information-Centric Networking
Research,” IEEE Communications Surveys and Tuto-
rials, vol. 16, no. 2, pp. 1024–1049, 2014.

[4] T. Pauly, B. Trammell, A. Brunstrom, G. Fairhurst,
C. Perkins, P. Tiesel, and C. Wood, “An Architecture
for Transport Services,” IETF, Internet-Draft – work
in progress 02, October 2018.

[5] I. Moiseenko, L. Wang, and L. Zhang, “Con-
sumer/producer communication with application level
framing in named data networking,” in Proceedings
of the 2nd ACM Conference on Information-Centric
Networking. ACM, 2015, pp. 99–108.

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

	Introduction
	Challenges
	AgACCP
	Related work

	Next Steps

